
1、程序运行输入数据时,第一行为A矩阵的行列数和B矩阵的行列数,接着分别输入A、B两个矩阵的值。
2、首先,定义6个整型变量,保存A、B矩阵的行和列,以及控制循环的变量,k则用于实现矩阵的乘法。
3、接着,定义三个整型二维数组,保存A、B和C矩阵的各元素。
4、输入三个矩阵的行数和列数,保存在变量a、b、c中。
5、输入矩阵A的各元素,保存在数组X中。
6、输入矩阵B的各元素,保存在数组Y中。
7、将二维数组Z的各元素,初始化为0。
8、用两层for循环,控制矩阵的乘法,并输出乘法所得的结果。
9、计算A矩阵和B矩阵的乘法,结果保存在数组Z中。
10、最后,输出乘法所得的结果,即输出Z数组中的所有元素。
答:c语言判断矩阵是否可逆的方法如下:
N阶方阵A为可逆的,重要条件是它的行列式不等于0,一般只要看它的行列式就可以啦。
矩阵可逆=矩阵非奇异=矩阵对应的行列式不为0=满秩=行列向量线性无关。 行列式不为0,首先这个条件显然是必要的。其次当行列式不为0的时候,可以直接构造出逆矩阵,于是充分。
具体构造方法每本书上都有,大体上是用行列式按行列展开定理,即对矩阵A,元素写为a_ij,则sigma(j)a_ij*M_kj=detA*delta_ik,其中M_ij为代数余子式,于是B_ij=M_ji/detA即为A的逆矩阵。
在线性代数中,给定一个 阶 方阵 ,若存在一 阶方阵使得 = = 或 = 、 = 任满足一个,其中 为 阶单位矩阵,则称 是可逆的,且 是 的逆阵,记作 ^-1。
1,位置变换:把矩阵第i行与第j行交换位置,记作:r(i)<-->r(j);
倍法变换:把矩阵第i行的各元素同乘以一个不等于0的数k,记作:k*r(i);
消法变换:把矩阵第j行各元素同乘以数k,加到第i行的对应元素上去,
c语言中矩阵就是二维数组,在n阶行列式中,把所在的第i行与第j列划去后,所留下来的n-1阶行列式叫元的子式。行列式与代数余子式的关系
行列式等于它任意一行(列)的各元素与其对应的代数式余子式乘积之和 。
由于一共有k种方法来选择该保留的行,有k种方法来选择该保留的列,因此A的k阶余子式一共有 Ckm*Ckn个。
printf("您输入的矩阵中的最大值为:%d\n",max);
printf("它所在的行号和列号分别是:%d,%d\n",(index/n)+1,(index%n)+1);