互质是什么意思(互质数是什么意思举个例子)

2023-05-15 22:06:10 浏览

互质:互质,公约数只有1的两个整数,叫做互质整数·公约数只有1的两个自然数,叫做互质自然数,后者是前者的特殊情形·。定义:互质,若N个整数的最大因数是1,则称这N个整数互质。例如8,10的最大公因数是2,不是1,因此不是整数互质。7,10,13的最大公因数是1,因此这是整数互质。5和5不互质,因为5和5的公因数有1、5。1和任何数都成倍数关系,但和任何数都互质。因为1的因数只有1,而互质数的原则是:只要两数的公因数只有1时,就说两数是互质数。因为1只有一个因数所以1既不是质数(素数),也不是合数,无法再找到1和其他数的别的公因数了,所以1和除了零以外的任何整数互质。互质数的写法:如c与m互质,则写作(c,m)=1。小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”这里所说的“两个数”是指自然数。“公约数只有1”,不能误说成“没有公约数。”

互质是什么意思互质数是什么意思举个例子

(1)两个不相同质数一定是互质数。例如,2与7、13与19。  (2)相邻的两个自然数是互质数。例如15与16。  (3)相邻的两个奇数是互质数。例如49与51。  (4)两个相差4的奇数是互质数。例如49与53。  (5)大数是质数的两个数是互质数。例如97与88。  (6)小数是质数,大数不是小数的倍数的两个数是互质数。例如7和16。  (7)2和任何奇数是互质数。例如2和87。  (8)1和任何自然数(0除外)都是互质数。

互质是公约数只有1的两个整数,叫做互质整数。公约数只有1的两个自然数,叫做互质自然数,后者是前者的特殊情形。

互质,若N个整数的最大公因数是1,则称这N个整数互质。

例如8,10的最大公因数是2,不是1,因此不是整数互质。

7,11,13的最大公因数是1,因此这是整数互质。

5和5不互质,因为5和5的公因数有1、5。

1和任何数都成倍数关系,但和任何数都互质。因为1的因数只有1,而互质数的原则是:只要两数的公因数只有1时,就说两数是互质数。因为1只有一个因数所以1既不是质数(素数),也不是合数,无法再找到1和其他数的别的公因数了。1和-1与所有整数互素,而且它们是唯一与0互素的整数。

互质数的写法:如c与m互质,则写作(c,m)=1。

小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”

这里所说的“两个数”是指自然数。

“公约数只有1”,不能误说成“没有公约数。”

这里有一个误区,认为0不与任何数互质。严格地按照互质的定义来看0与1,-1均互质,通过任意有理数的表示方式a/b(a,b互质且b为正整数),同样可以得出0与1,-1均必须互质,否则0不是有理数。

(1)两个不同的质数一定是互质数。

(2)一个质数,另一个不为它的倍数,这两个数为互质数。

(3)1不是质数也不是合数,它和任何一个自然数(1本身除外)在一起都是互质数。如1和9908。

(4)相邻的两个自然数是互质数。如15与16。

(5)相邻的两个奇数是互质数。如49与51。

(6)较大数是质数的两个数是互质数。如97与88。

(7)两个数都是合数(二数差又较大),较小数所有的质因数,都不是较大数的约数,这两个数是互质数。

如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。

(8)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是较小数的约数,这两个数是互质数。如85和78。85-78=7,7不是78的约数,这两个数是互质数。

(9)两个数都是合数,较大数除以较小数的余数(不为“0”且大于“1”)的所有质因数,都不是较小数的约数,这两个数是互质数。如462与221

2、5都不是221的约数,这两个数是互质数。

所以这两个数是互质数。

三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。

参考资料互质_百度百科

互质是公约数只有1的两个整数,叫做互质整数。公约数只有1的两个自然数,叫做互质自然数,后者是前者的特殊情形。

互质,若N个整数的最大公因数是1,则称这N个整数互质。

例如8,10的最大公因数是2,不是1,因此不是整数互质。

7,11,13的最大公因数是1,因此这是整数互质。

5和5不互质,因为5和5的公因数有1、5。

1和任何数都成倍数关系,但和任何数都互质。因为1的因数只有1,而互质数的原则是:只要两数的公因数只有1时,就说两数是互质数。因为1只有一个因数所以1既不是质数(素数),也不是合数,无法再找到1和其他数的别的公因数了。1和-1与所有整数互素,而且它们是唯一与0互素的整数。

互质数的写法:如c与m互质,则写作(c,m)=1。

小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”

这里所说的“两个数”是指自然数。

“公约数只有1”,不能误说成“没有公约数。”

这里有一个误区,认为0不与任何数互质。严格地按照互质的定义来看0与1,-1均互质,通过任意有理数的表示方式a/b(a,b互质且b为正整数),同样可以得出0与1,-1均必须互质,否则0不是有理数。

(1)两个不同的质数一定是互质数。

(2)一个质数,另一个不为它的倍数,这两个数为互质数。

(3)1不是质数也不是合数,它和任何一个自然数(1本身除外)在一起都是互质数。如1和9908。

(4)相邻的两个自然数是互质数。如15与16。

(5)相邻的两个奇数是互质数。如49与51。

(6)较大数是质数的两个数是互质数。如97与88。

(7)两个数都是合数(二数差又较大),较小数所有的质因数,都不是较大数的约数,这两个数是互质数。

如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。

(8)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是较小数的约数,这两个数是互质数。如85和78。85-78=7,7不是78的约数,这两个数是互质数。

(9)两个数都是合数,较大数除以较小数的余数(不为“0”且大于“1”)的所有质因数,都不是较小数的约数,这两个数是互质数。如462与221

2、5都不是221的约数,这两个数是互质数。

所以这两个数是互质数。

三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。

参考资料互质_百度百科

本文版权声明本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请联系本站客服,一经查实,本站将立刻删除。